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Abstract In this review, we consider apoptosis as a process intimately linked to the cell cycle. There are several 
reasons for thinking of apoptosis as a cell cycle phenomenon. First, within the organism, apoptosis is almost exclusively 
found in proliferating tissues. Second, artificial manipulation of the cell cycle can either prevent or potentiate apoptosis, 
depending on the point of arrest. Data from such studies have suggested that molecules acting late in GI are required 
for apoptosis. Since passage through late GI into S phase in mammalian cells is  known to be regulated by p53 and by 
activation of cyclin-dependent kinases, we also examine recent studies linking these molecules to the apoptotic 
pathway. 1995 Wiley-Liss, Inc. 
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Not all cell deaths are accidental. In animal 
development, proper shape and function require 
cell death as well as cell division. For example, 
fingers and toes are formed from the death of 
cells in the interdigital tissue [Kerr et al., 1987; 
Novack and Korsmeyer, 19941. The elaboration 
of even more complex structures also depends 
on cell death. Formation of the T and B cell 
repertoires of the immune system is dependent 
on negative selection (elimination of nonreac- 
tive or self-reactive cells) as much as positive 
selection [Cohen, 19911. Similar forces are at 
work in shaping the nervous system [Raff, 19921. 
In development of the nematode Caenorhabditis 
elegans, exactly 131 cells die according to a 
precisely regulated genetic program muan and 
Horvitz, 19901. Cell death is also necessary as a 
protective mechanism. Examples include the di- 
rected lysis of infected cells, foreign cells, or 
incipient neoplasms by the immune system 
[Bishop and Whiting, 1983; Duke, 1991; Squier 
and Cohen, 19941 and the autolysis of immune 
cells themselves following damage by y radia- 
tion [Umansky, 19911. It is striking that in these 
various cases of cell death, there exist features 
sufficiently unique as to  constitute a well- 
defined cytological entity, known as apoptosis: 
the form of cell death in which the cell is de- 
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stroyed from within [Kerr et al., 1972; Wyllie et 
al., 19801. A cardinal feature of apoptotic cells is 
the appearance of highly condensed chromatin, 
segregated into sharply defined bodies within an 
intact nuclear envelope. Often, the DNA is di- 
gested by endonucleases, making detection of 
DNA fragments a commonly used assay for apop- 
tosis [Arends et al., 19901. The cell shrinks and 
condenses, fragmenting into multiple, mem- 
brane-bound bodies (apoptotic bodies) which are 
eventually engulfed by surrounding cells-thus 
removed without inflammation and attendant 
damage to surrounding tissue. It is this constel- 
lation of features that is referred to as apoptosis. 

The thought that multicellular organisms have 
evolved genetic mechanisms for promoting cell 
death presents something of a puzzle-how 
might genes be selected that have death as a 
phenotype? One way is by linking cell death to 
cell proliferation. Whereas in yeast essentially 
all proliferation controls ultimately feed into a 
single gene, cdc2 in S. pombe or CDC28 in S. 
cereuisiae, in multicellular eukaryotes cell cycle 
control is split up amongst a dozen cdcZICDC28 
homologs, whose products are referred to  as 
cyclin-dependent kinases (CDKs) because of their 
dependence on a cyclin subunit for full activity 
and cell cycle regulation. If independent activa- 
tion of several CDK-cyclin complexes were re- 
quired for cell division to proceed, activation of 
more or fewer than the proper number could be 
fatal. Depending then on the physiological envi- 
ronment, withholding activating stimuli (hor- 
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mones, growth factors, cytokines) or supplying 
inappropriate stimuli (cell contact, antigen bind- 
ing, receptor ligation) might lead to incorrect 
timing of CDK activation. In this scenario, the 
“death genes” are then actually a subset of the 
genes whose normal function is to mediate cell 
proliferation, and apoptosis is an incomplete, 
abnormal cell division IUcker, 19911. Such a 
hypothesis suggests that it might be possible to  
induce apoptosis by premature activation of 
CDKs by chemical or other artificial means. In 
yeast, mutations in regulatory genes impingmg 
on cdc2/CDC28 can lead to premature activa- 
tion of cdc2ICDC28, which brings about a “mi- 
totic catastrophe”: a premature mitosis in which 
chromatin condensation, spindle formation, and 
abortive division is disastrous for the cell. In 
mammalian cells, the morphological similarities 
between apoptosis and premature mitosis are 
quite suggestive of a role for CDKs in apoptosis 
[Rubin et al., 1993; Sen and D’Incalci, 1992; 
Ucker, 19911; in fact, such a role has recently 
been demonstrated [Meikrantz et al., 1994; Shi 
et al., 19941. In this review, we discuss apoptosis 
as a process intimately linked to the cell cycle. 

APOPTOSIS AS A CELL CYCLE PHENOMENON 
Association With Proliferation 

In vivo, apoptosis is detected primarily in pro- 
liferating tissues [Kerr and Harmon, 1991; Wyl- 
lie et al., 19801. Anywhere in the body where 
cells are dividing, apoptotic bodies are to be 
found: at low frequency in self-renewing tissues 
(like intestinal crypt) [Potten, 19771, in epithe- 
lium ofthe adrenal cortex [Wyllie et al., 1973a,b1, 
in the differentiating spermatogonium [Allan et 
al., 19871, and in the germinal centers of lymph 
nodes [Swartzendruber and Congdon, 19631. 
Apoptosis becomes particularly evident after pe- 
riods of rapid proliferation, and is thus detected 
in mammary tissue following weaning [Marti et 
al., 1994; Walker et al., 19891, in the endome- 
trium at estrus [Gerschenson and Rotello, 1991; 
Sandow et al., 1979; Otsuki et al., 19941, during 
ovarian follicular atresia [O’Shea et al., 19781, 
and in numerous other cases [e.g., Kerr and 
Harmon, 1991; Kerr et al., 1972; Ledda-Colum- 
ban0 and Columbano, 1991; Wyllie et al., 19801. 
As might be expected, apoptosis is a prominent 
feature in malignancies [Moore, 19871 and oc- 
curs at increased frequency in preneoplastic tis- 
sues [Ledda-Columbano and Columbano, 19911. 
In these cases, apoptosis is thought to serve a 
compensatory role: balancing an increase in cell 

number due to proliferation with cell loss due to  
death. The role of apoptosis in maintaining tis- 
sue homeostasis is well-illustrated in regression 
of liver tissue following lead nitrate- or cyproter- 
one acetate-induced hyperplasia [Bursch et al., 
1985; Columbano et al., 19851. Administration 
of either mitogen leads to an increase in organ 
size due to  massive cell proliferation. Upon with- 
drawal of the mitogen, the hyperplastic tissue 
regresses and the organ returns to normal size. 
Regression is entirely due to  apoptotic death. 

Both positive and negative signals trigger cells 
to stop proliferating and undergo apoptosis. Posi- 
tive signals include antigen receptor ligation of 
immature lymphocytes [Green and Scott, 19941, 
thyroxine-induced regression of larval compo- 
nents in amphibian metamorphosis moshizato, 
19891, glucocorticoid-induced thymocyte death 
[Wyllie, 19801, and absorption of the Mullerian 
structures in the male fetus in response to Mul- 
lerian-inhibiting substance [Glucksmann, 1951; 
Saunders, 19661. Negative signaling comprises 
withdrawal of necessary growth factors. For ex- 
ample, sympathetic neurons depend on a con- 
tinuous supply of nerve growth factor from the 
cells they innervate [Raff, 1992; Rubin et al., 
19931, while cells in the ventral prostate rapidly 
undergo apoptosis if testosterone is removed by 
castration [reviewed in Buttyan, 19911. Survival 
factor dependence is also found in tumor cell 
lines. For example, mouse myeloma lines will 
undergo apoptosis following withdrawal of IL-2 
and IL-6 [Colotta et al., 19921. Interestingly, 
apoptosis induced by factor withdrawal is associ- 
ated with induction of proliferation-associated 
genes [Buttyan et al., 1988; Colottaet al., 19921. 
This topic is discussed in greater detail below. 

Cell Cycle Arrest and Apoptosis 

Ultimately, the signals described above must 
impinge on the cell cycle if proliferation is to be 
halted and cells are to  die. How this is accom- 
plished requires understanding where in the cell 
cycle this intervention occurs. We consider two 
types of analysis: 1) cell cycle effects of physiologi- 
cal mediators of apoptosis, and 2) effects of 
artificially imposed cell cycle synchrony on apop- 
tosis induced by other agents. 

1. Cell cycle phase-specific death in- 
duced by physiological mediators of apop- 
tosis. The WEHI-231 line is a murine B cell 
lymphoma which retains many of the character- 
istics of immature B cells [Boyd and Schrader, 
19811. It displays surface IgM but not IgD, and 
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does not secrete immunoglobulin. When treated 
with anti-IgM antibodies, mimicking antigen- 
induced surface IgM cross-linking, these cells 
die by apoptosis after approximately 24-48 h 
[Benhamou et al., 1990; Hasbold and Klaus, 
19901. Flow cytometry revealed anti-IgM-treated 
cells were blocked from entering S phase: they 
ceased incorporating L3H1thymidine into DNA 
[Scott et al., 19851 and did not phosphorylate 
pRB [Maheswaran et al., 1991; Warner et al., 
19921. Growth arrest in G1 was apparent within 
12 h, well before the morphological changes 
characteristic of apoptosis had occurred. Anti- 
body treatment of G1 cells, obtained by centrifu- 
gal elutriation, prevented entry into S phase 
with arrest very close to the G1-S border [Scott 
et al., 19861. 

T cell hybridomas are also sensitive to activa- 
tion-induced death following ligation of their 
antigen receptors [Green and Scott, 19941. Fol- 
lowing stimulation, they rapidly accumulate in 
GI prior to the appearance of an apoptotic mor- 
phology [Ashwell et al., 19871. The ability of 
antisense c-myc oligonucleotides to halt growth 
and prevent apoptosis in such cells [Shi et al., 
19921 implies a requirement for molecules re- 
quired for continued proliferationtinitiation of 
DNA replication (see below). Similarly, expo- 
sure of lymphocytic lines to dexamethasone, a 
model agent for glucocorticoid-induced deletion 
of T cellsithymocytes, induces G1 arrest prior to 
morphological evidence of killing [Harmon et 
al., 19791. 

The bursa of Fabricius, the primary site of B 
cell development in birds, contains a cohort of 
stem cells that gives rise to a rapidly proliferat- 
ing population of lymphoblasts with IgM on 
their surface. Bursa1 stem cells and their prog- 
eny have been shown to be very sensitive to 
apoptosis induced by mechanical disruption of 
cell-cell contact in short term culture of bursa1 
follicles as well as by y radiation and other DNA 
damaging agents [Neiman et al., 19911. Apopto- 
sis is apparent within the first hour following 
tissue dispersion, and occurs primarily in S phase 
cells: fluorescence-activated cell sorting based 
on DNA content followed by agarose gel electro- 
phoresis revealed that DNA degradation was 
occurring primarily in S phase cells. Apoptotic 
cells were positive for several molecular mark- 
ers associated with S phase of the cell cycle 
[Neiman et al., 19941. 

Since many growth factors act as progression 
factors [Pardee, 19891, promoting passage from 
G1 to S phase of the cell cycle, it is expected that 

apoptosis resulting from factor withdrawal cor- 
relates with arrest in G1. This is the case when 
ND7 cells, prepared by fusing rat dorsal root 
ganglion neurons with a neuroblastoma line, are 
transferred to serum-free medium [Howard et 
al., 19931 and when a variety of hematopoietic 
cell lines are deprived of particular interleuhns 
[Nufiez et al., 1990; Colotta et al., 19921. An 
exception to this generalization is the FVA cell 
line (murine erythroid hematopoietic progenitor 
cells infected with the anemia-inducing strain of 
Friend virus). These cells undergo apoptosis when 
deprived of erythropoietin [Kelley et al., 1992; 
Koury and Bondurant, 19901. Cell loss occurs in 
the G1 and S phases of the cell cycle, but with- 
out apparent growth arrest [Kelley et al., 19941. 

These data seem to place entry into apoptosis 
around the time of entry into S phase. Cells may 
halt abruptly in G1, without entering S, or may 
actually show evidence of having begun DNA 
replication. Since there are always exceptions to  
any generalization, we note that a human B cell 
lymphoma analogous to the murine WEHI-231 
line seems to undergo activation-induced apopto- 
sis from G2 rather than G1 [Ishigami et al., 
19921. 

2. Cell cycle arrest modifies the response 
to apoptosis-inducing agents. Cytotoxic lym- 
phocytes (CTL) kill target cells by mechanisms 
that independently disrupt the cell membrane 
and induce apoptosis [Greenberg and Litchfield, 
in press; Squier and Cohen, 19941. Inhibitors of 
replication fork-associated enzymes prevented 
DNA fragmentation and apoptosis in target cells, 
but not membrane lysis, suggesting that apopto- 
sis was dependent on cell proliferation [Nish- 
ioka and Welsh, 19921. In fact, target 3T3 fibro- 
blasts could be made refractory to CTL-induced 
DNA fragmentation by serum deprivation. Infec- 
tion of these quiescent 3T3 cells with herpes 
simplex virus 1 forced induction of DNA synthe- 
sis and restored susceptibility to  CTL-induced 
apoptosis [Nishioka and Welsh, 19941. 

Proliferating, mature T lymphocytes can be 
induced to undergo apoptosis after ligation of 
their antigen receptor [Boehme and Lenardo, 
19931. When proliferatingA.E7 cells, a nontrans- 
formed CD4' TH1 clone, were stimulated via the 
T cell receptor (TCR) by anti-CD3e antibodies or 
via irradiated splenocytes and antigen, cells died 
by apoptosis. The extent of cell loss was directly 
proportional to the extent of proliferation. When 
A.E7 cells were incubated with cell cycle arrest 
agents prior to TCR ligation, cells that were 
blocked in G1 by mimosine, deferoxamine, or 
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dibutyryl CAMP were resistant to  apoptosis, 
while cells arrested at G l / S  by aphidicolin or in 
early S by excess thymidine were sensitized. G1 
arrest did not simply select for a resistant popu- 
lation of cells, since release from arrest rapidly 
led to S phase and apoptosis. Like anti-IgM- 
mediated apoptosis of WEHI-231 cells, mol- 
ecules acting in late Gl/early S seem to be 
implicated in induction of apoptosis. 

Another physiological inducer of apoptosis 
which has received careful cell cycle scrutiny is 
TNF-a. A variety of data indicate that TNF-a 
induces apoptosis in G1 in L929 cells [Darzynk- 
iewicz et al., 1984; Kirstein et al., 1986; van de 
Loosdrecht et al., 19931. However, G1 arrest 
with TGF-P, TNF-a, IL-1P, and IL-6 did not 
render cells more sensitive to TNF-a. Instead, 
cells were protected against TNF-a-induced cyto- 
toxicity [Belizario and Dinarello, 19911. This 
suggests that these agents may arrest cells at  a 
point in G1 prior to the synthesis of TNF- 
sensitivity factors. Studies with human epithe- 
lial cells suggest that TNF sensitivity appears 
late in G1. Human HeLa cells are normally 
resistant to TNF-a, but, like numerous other 
cell types, can be sensitized to  TNF-a by cotreat- 
ment with cycloheximide [Wallach, 19841, an 
agent which arrests HeLa cells late in G1, near 
the G1-S boundary. Cell cycle arrest in S phase 
with hydroxyurea was as effective at sensitizing 
HeLa cells as cycloheximide, suggesting a re- 
quirement for molecules acting at  the time of 
the G1 to S transition in TNF-a-induced apopto- 
sis [Meikrantz et al., 19941. 

S phase arrest also potentiates apoptosis in- 
duced in HeLa cells by numerous agents with a 
wide variety of pharmacological activities, includ- 
ing staurosporine, 6-dimethylaminopurine, oka- 
daic acid, caffeine, and y-radiation [Meikrantz et 
al., 1994; Meikrantz and Schlegel, unpublished 
observations]. At the doses used, the majority of 
these agents have little or no effect on HeLa cell 
proliferation. In the case of staurosporine, ar- 
rest earlier in the cell cycle with lovastatin, 
which causes a reversible G1 arrest [Jakobisiak 
et al., 1991; Keyomarsi et al., 19911, did not 
potentiate apoptosis. Thus, a wide variety of 
apoptosis-inducing agents seem to require mol- 
ecules synthesized in late Gl/early S. 

Apoptosis Induced by p53 

Transfection of wild type p53 into trans- 
formed cells reduces colony forming ability 
[Baker et al., 1990; Isaacs et al., 1991; Johnson 
et al., 1991; Takahashi et al., 19921 and invari- 

ably leads to growth arrest in G1 [Diller et al., 
1990; Martinez et al., 1991; Mercer et al., 1990; 
Michalovitz et al., 19901. In murine myeloid 
leukemic lines, which typically lack p53, restora- 
tion of the wild type gene results in apoptosis 
[Ryan et al., 1993; Yonish-Rouach et al., 1991, 
19931. By transfecting M1 cells, a mouse my- 
eloid leukemia line, or DP16-1 MEL cells, a 
Friend virus-induced murine erythroleukemia 
line, with a temperature-sensitive p53, cell cycle 
effects of p53-induced apoptosis were studied by 
shifting cells to the permissive temperature 
[Ryan et al., 1993; Yonish-Rouach et al., 19931. 
In both cases, cells in G1 were preferentially 
susceptible to p53-induced killing. Treatment of 
the transfected M1 cells with IL-6, which ar- 
rests these cells in G1 [Resnitzsky and Kimchi, 
1991; Resnitzsky et al., 19921, prevented apopto- 
sis. However, TGF-P, another G1-arrest agent, 
failed to protect against p53-induced apoptosis; 
instead, in the presence of TGF-P, p53-depen- 
dent death was accelerated monish-Rouach et 
al., 19931. One explanation for these results is 
that IL-6 and TGF-P arrest at  different points in 
G1, before and after synthesis of molecules re- 
quired for p53-dependent apoptosis. Density- 
dependent growth arrest of transfected DP16-1 
cells also blocked p53-dependent apoptosis, while 
cells released from the block died rapidly after 
shifting to the permissive temperature. Cells 
synchronized in G1 with mimosine or by isoleu- 
cine deprivation underwent apoptosis much 
more quickly than density-arrested cells. If ar- 
rested cells were released and allowed to progress 
out of G1 before shifting to the permissive tem- 
perature, apoptosis did not occur until cells had 
returned to G1 [Ryan et al., 19931. The different 
response rates of density-arrested versus mimo- 
sine or isoleucine deprivation arrested cells again 
indicates that molecules required for p53-depen- 
dent apoptosis are synthesized at a later point in 
G1. 

Apoptosis Induced by Perturbation of DNA 
Metabolism 

Agents that block DNA replication, induce 
DNA damage, interfere with DNA topology, or 
block the segregation of chromosomes are lethal 
to  the cell. Perhaps unsurprisingly, the majority 
of these agents have been found to induce apop- 
tosis [see the tabulation in Sen and D’Incalci, 
19921. In some cases apoptosis occurred with 
little or no cell cycle specificity [Cotter et al., 
19921. In other cases, careful flow cytometric 
analysis revealed cell cycle differences in toxicity 
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and susceptibility. For example, HL-60 cells, a 
human promyelocytic leukemia line, were pref- 
erentially affected in G1 by nitrogen mustard; 
cells progressing through S phase were more 
susceptible to hydroxyurea, camptothecin, and 
teniposide; while G2/M cells preferentially un- 
derwent apoptosis in response to  y-radiation 
[Gorczyca et al., 19931. These data raise two 
important points. First, it is possible that some 
agents directly activate apoptosis regardless of 
the cell cycle stage. Second, it is possible that cell 
cycle-related differences in response to such 
agents tells less about pathways of apoptosis 
induction than about the effect of the cell cycle 
stage on the severity of damage or the capacity 
to  repair particular lesions [Gorczyca et al., 
19931. 

Apoptosis in Quiescent Cells 

Several studies have reported apoptosis in 
quiescent cells. One such model system is involu- 
tion of the prostate following androgen with- 
drawal, a process that has been studied exten- 
sively in the rat following castration. Within 
days of castration, the terminally differentiated 
secretory epithelial cells which line the ducts of 
the gland begin to undergo massive apoptosis. 
These cells, which compose as much as 85% of 
the cell population of the prostate, are lost within 
a week after castration [Lesser and Bruchovsky, 
1973; Kerr and Searle, 19731, making this is an 
excellent tissue for studying the biochemistry 
and molecular biology of apoptosis. A number of 
apoptosis-specific proteins and “testosterone- 
repressed” messages have been identified [see 
Buttyan, 1991 for review]. Most interesting was 
the sequential induction of c-fos and c-myc, since 
induction of these genes, particularly in this 
sequence, is usually associated with the transi- 
tion from quiescence to proliferative growth 
[Muller et al., 1984; Thompson et al., 19861, 
including regrowth of the prostate after andro- 
gen replacement [Katz et al., 19891. This finding 
suggests that the quiescent acinar epithelial cells 
were being induced to reenter a defective cell 
cycle [Colombel et al., 19921 that ends in apopto- 
sis rather than continuing DNA replication. In 
fact, cyclin A is expressed in regressing prostate, 
suggesting that these cells progress to a point 
quite late in G1 (R. Buttyan, personal communi- 
cation). A similar early induction of c-fos, junB, 
junD, and c-jun is seen during involution of 
mammary epithelium at weaning [Marti et al., 
19941 and during apoptosis induced by growth 

factor withdrawal from a myeloid leukemia line 
[Colotta et al., 19921. 

Normally, c-myc is down-regulated during the 
transition from proliferative growth to quies- 
cence; in fact, down regulation occurs in a cell 
cycle-independent manner as soon as mitogen is 
withdrawn [Dean et al., 1986; Waters et al., 
19911. When c-myc is expressed ectopically in 
Rat-1 fibroblasts or in primary rat embryo fibro- 
blasts during serum withdrawal, proliferative 
growth is maintained and cells undergo apopto- 
sis [Evan et al., 19921. Similarly, apoptosis can 
be induced in serum-starved, quiescent Rat- l a  
fibroblasts following expression of myc from the 
Zn2+-inducible metallothionein promoter [Ho- 
ang et al., 19941. Since myc expression stimu- 
lates transcription (either directly or indirectly) 
of a number of genes acting late in G1 that are 
necessary for the G1 to S transition [Buchou et 
al., 1993; Hoang et al., 1994; Jansen-Durr et al., 
1993; Kim et al., 1994; Shibuya et al., 19921, 
ectopic expression of c-myc may force cells into a 
late G1-like state of preparedness for DNA repli- 
cation or apoptosis. 

A similar interpretation may apply to induc- 
tion of apoptosis in quiescent cells by adenovirus 
E 1A. Adenovirus E 1A induces apoptosis when 
expressed in the absence of E1B 19K, a second 
adenovirus protein [Pilder et al., 1984; Rao et 
al., 1992; Subramanian et al., 1984; White et al., 
1984a,b, 19921. Infection of normal rat ludney 
cells with an adenovirus producing only the E 1A 
protein and lacking the E1B region caused apop- 
tosis only when the cells were growth arrested, 
either by growth to confluence or by serum 
starvation [Mymryk et al., 19941. Like myc, E1A 
activates transcription of a number of genes 
required for DNA replication [Buchou et al., 
1993; Moran, 1993; Nevins, 1992; Whyte et al., 
19881. In fact, E1A mutants that no longer 
promote DNA synthesis in rat kidney cells are 
also defective for inducing apoptosis [Howe et 
al., 19901. 

In general, it appears that cells must progress 
to late G1 of the cell cycle for apoptosis to occur. 
Arrest prior to this stage delays or blocks apopto- 
sis while arrest after this promotes apoptosis. 
What is significant about this particular mo- 
ment in the cell cycle? First of all, this is the p53 
restriction point. In normal cells, passage 
through this point of the cell cycle is at least 
partially regulated by p53, and it has become 
increasingly evident that many types of apopto- 
sis-inducing agents are p53-dependent. What is 



Apoptosis and the Cell Cycle 165 

the role of p53 in apoptosis? How is the role of 
p53 in apoptosis related to its role as a cell cycle 
regulator? Secondly, this is the cell cycle stage 
often referred to as the “R point” in mammalian 
cells [Pardee, 19741 or “start” in yeast [Hartwell 
et al., 19741, the stage where cells become irre- 
versibly committed to DNA replication. In organ- 
isms from yeast to man, passage through this 
point requires activation of specific CDKs. Are 
there restriction point-related CDKs whose acti- 
vation is necessary for apoptosis to occur? We 
shall take up these questions in turn. 

APOPTOSIS AND THE GI RESTRICTION 
POINT: p53 AND p21 

The idea that p53 acts as a “guardian of the 
genome” [Lane, 19921, monitoring a restriction 
point that requires cells to repair their DNA 
damage before entering S phase or else face 
apoptosis, is consistent with the finding that 
cells or cell lines derived from p53-deficient ani- 
mals fail to undergo apoptosis in response to 
DNA damaging agents [Clarke et al., 1993,1994; 
Lowe et al., 1993a,b; McCarthy et al., 1994; 
Merritt et al., 19941. Loss of p53 function would 
then lead to fixation of genetic abnormalities 
resulting from DNA replication in the presence 
of DNA damage. If p53 were to act by eliminat- 
ing cells with compromised DNA, the integrity 
of the organism would be maintained, although 
at  the expense of cell loss due to apoptosis. 
Unlike the unicellular yeasts, which lack p53, 
this is a viable option for a multicellular organ- 
ism. The proliferation of multiple malignancies 
in p53-/- mice could result from the persistent 
proliferation of cells with DNA damage. The 
ability of p53 to induce apoptosis on its own 
after re-introduction into p53-deficient cells, and 
its ability to limit the growth of existing neo- 
plasms through apoptosis [Liu et al., 1994; Ra- 
dinsky et al., 1994; Symonds et al., 19941, dem- 
onstrates a role for p53 in limiting neoplastic 
growth via induction of apoptosis. How p53 ac- 
complishes its growth-limiting function must be 
related to its ties to the cell cycle and to control 
of CDK activation and inactivation, for it is via 
CDKs that the cell cycle progresses. 

Cyclins are proteins whose levels rise and fall 
in an orderly way during the course of the cell 
cycle. They are positive regulatory subunits for 
the CDKs, conferring upon them substrate and 
cell cycle specificity. In addition to binding of the 
cyclin subunit, CDKs are regulated by activat- 
ing and inactivating phosphorylations and by 

association of inhibitory CDK-interacting pro- 
teins (CIPs). These interactions are summa- 
rized schematically in Figure 1, which depicts an 
idealized CDK-cyclin complex. Events required 
to prepare the cell for entry into S phase are 
mediated by the D and E type cyclins [Sherr, 
19941. Principal among these events is phosphor- 
ylation of the product of the retinoblastoma 
susceptibility gene, pRB. Unphosphorylated 
pRB, present throughout most of G1, acts as a 
damper to cell proliferation by sequestering E2F 
transcription factors, which are necessary for 
transcription of genes required for entry into S 
phase. Phosphorylation of pRB by cyclin D- and 
cyclin E-associated CDKs releases the transcrip- 
tion factors and allows proliferation to advance. 
Ultimately, commencement of DNA replication 
requires activation of CDK-cyclin A complexes, 
which occurs at the time of the G1-S transition, 
a process described in more detail below. 

Although identified (as CIPl )  in a two-hybrid 
screen for proteins interacting with cdk2 [Harper 
et al., 19931 and purified (as CAP201 from mouse 
cells by virtue of its association with an inactive 
population of cdk2 [Gu et al., 19931, the p21 CIP 
has been shown to bind to and inactivate in vitro 
virtually every member of the CDK-cyclin fam- 
ily [Harper et al., 1993; Xionget al., 19931. Clues 
as to its physiological function come from how it 
was identified in two other systems. First, p21 
was discovered as a senescent cell-derived inhibi- 
tor of DNA replication ( sd i l )  in human diploid 
fibroblasts by screening cDNAs prepared from 
senescent human diploid fibroblasts for their 
ability to inhibit L3H1thymidine uptake upon 
transient overexpression in young, dividing fibro- 
blasts [Noda et al., 19941. Second, a connection 
to p53-dependent inhibition of growth was real- 
ized when p2 1 was discovered independently 
(under the name WAFl, for wild type p53- 
activated fragment 1) as a message whose tran- 
scription was entirely dependent on wild type 
p53 during p53-mediated growth arrest [El- 
Deiry et al., 19931. p21 is induced in p53- 
dependent G1 arrest which follows y irradiation 
of normal human diploid fibroblasts, resulting 
in inhibition of cdk2-cyclin E kinase activity, 
preventing phosphorylation of pRB, and thereby 
blocking entry into S phase [DuliE et al., 19941. 
Similarly, in transformed cells (wild type p53- 
expressing colorectal carcinoma lines RKO and 
HCT- 1161, doxorubicin (Adriamycin) treatment 
induced p2 1 expression and blocked cdk2-cyclin 
E kinase activity. There was no induction of p21 
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Fig. 1 .  Activation and inactivation of a model CDK-cyclin complex. 

and little or no decrease in cyclin E-associated 
kinase activity following similar treatment of 
p53-deficient tumor lines treated with doxorubi- 
cin [El-Deiry et al., 19941. While induction of 
p21 by serum- or growth factor-stimulation of 
quiescent cells [Noda et al., 19941 is indepen- 
dent of p53, induction of p21 by DNA damaging 
agents is completely dependent on p53 [Michieli 
et al., 19941. Expression of p21 in a number of 
tumor-derived cell lines was able to suppress 
tumor growth. Expression of the p21 gene in the 
sense but not the antisense orientation resulted 
in a 10- to 20-fold decrease in colony-forming 
ability in p53-deficient tumor lines (the colon 
tumor line SW480, the brain tumor line DEL, 
and the lung adenocarcinoma line H1299 [El- 
Deiry et al., 19931). Upon exposure to y radia- 
tion, tumor cells containing wild type p53 in- 
duced p21 and underwent apoptosis, while p21 
and apoptosis were lacking in p53-deficient cells 
[El-Deiry et al., 19941. Thus, induction of p21 
and consequent inhibition of CDKs may be a 
first step in p53-dependent apoptosis. 

Interestingly, p53 and p21 also appear to in- 
duce a cell cycle arrest via mechanisms that are 
independent of CDK-cyclin complexes. SV40 
DNA replication can be supported in an in vitro 

system containing T antigen and human DNA 
replication proteins Waga and Stillman, 19941. 
Addition of excess p21 to the reaction caused an 
accumulation of early DNA replication interme- 
diates [Waga et al., 19941, suggesting that p21 
was interfering with DNA elongation but not 
initiationlmelting of origins of replication. Addi- 
tion of the p16 CIP was without effect. The p21 
inhibition could be overcome by addition of ex- 
cess PCNA (proliferating cell nuclear antigen), a 
subunit required by DNA polymerase 6. This 
inhibition took place in the absence of detectable 
cyclins or CDKs, and involved formation of a 
complex between p21 and PCNA Waga et al., 
19941. p53 itself physically interacts with a pro- 
tein required for DNA replication, replication 
factor A (RPA, also referred to in the literature 
as RF-A or RP-A), a single-stranded DNA bind- 
ing protein complex required for DNA replica- 
tion [Fang and Newport, 1993; Waga and Still- 
man, 19941. Binding of p53 to RPA blocks DNA 
replication [Dutta et al., 1993; He et al., 1993; Li 
and Botchan, 19931. This may explain the obser- 
vation that UV-induced apoptosis in a T antigen- 
immortalized pituitary (somatotropic) line ex- 
pressing a temperature sensitive p53 mutant 
occurs in a p53-dependent manner (i.e., only at 
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the permissive temperature), but in the absence 
of p53-dependent transcription1 translation (i.e., 
in the presence of actinomycin D or cyclohexi- 
mide). Since shifting to the permissive tempera- 
ture resulted in translocation of p53 to the 
nucleus, the authors propose that p53 affects 
apoptosis via direct participation in DNA repair 
or DNA degradation [Caelles et al., 19941. 

Regardless of mechanism, the data strongly 
suggest that the first steps on the pathway of 
p53-dependent apoptosis are a cell cycle block at 
the beginning of S phase. In this light, it is 
interesting to note that cell cycle arrest is also a 
feature of several p53-independent pathways of 
apoptosis, for example, the activation-induced 
death of WEHI-231 cells, dexamethasone dele- 
tion of thymocytes, and TNF-a cytotoxicity. Fur- 
thermore, S phase arrest was able to promote 
apoptosis by p53-independent apoptosis-induc- 
ing agents in a T cell hybridoma [Boehme and 
Lenardo, 19931 and in HeLa cells, which are 
human papillomavirus positive and thus lack 
functional p53 [Meikrantz et al., 1994; Mei- 
krantz and Schlegel, unpublished observations]. 
HeLa cells are normally very resistant to y radia- 
tion-induced apoptosis. When HeLa cells are 
arrested in S phase, however, this resistance is 
overcome. We suggest that S phase arrest by 
agents such as hydroxyurea, thymidine, and 
aphidicolin chemically impose the cell cycle ar- 
rest normally mediated via p53. This immedi- 
ately suggests that transient overexpression of 
p2l-i.e., imposition of a molecular block to 
proliferation as opposed to a chemical one-will 
substitute for chemical agents in sensitizing cells 
to apoptosis inducers. Evidence that p21 is actu- 
ally required for apoptosis comes from the obser- 
vation that antisense constructs of p21 block 
p53-mediated apoptosis (J.C. Barrett, personal 
communciation). 

Growth arrest by p53 cannot be the only trig- 
ger for apoptosis, as can be inferred from the 
different responses to y radiation of trans- 
formed and nontransformed cells expressing wild 
type p53. Nontransformed cells typically show 
only growth arrest, while transformed cells un- 
dergo apoptosis [Dulii: et al., 1994; El-Deiry et 
al., 19941. Primary fibroblasts from p53+’+ mice 
do not display a significant apoptotic response to 
y radiation unless they are transformed by a 
combination of oncogenes ( E l A  and H-ras) 
[Lowe et al., 1993al. These findings strongly 
suggest that an additional proliferation-associ- 
ated step is required for apoptosis. Cell prolifera- 

tion and passage through the G1 restriction 
point requires activation of specific CDKs, par- 
ticularly cyclin E- and cyclin A-dependent pro- 
tein kinases [Dou et al., 19931. We have seen 
that inactivation of CDK-cyclin E complexes is 
associated with p53-dependent growth arrest 
and apoptosis; now we shall examine a role for 
activation of CDK-cyclin A complexes in apopto- 
sis. 

APOPTOSIS A N D  THE C1 RESTRICTION 
POINT: ACTIVATION OF CDKS 

Activation of cdk2-cyclin A is required for the 
transition from G1 to S. Cdk2 becomes activated 
as a protein lunase at the time of entry into S 
phase [Rosenblatt et al., 19921. Inactivation of 
cdk2 by microinjection of neutralizing antibod- 
ies to cyclin A [Pagano et al., 19921 or cdk2 
[Pagano et al., 19931, treatment with antisense 
cyclin A nucleotides [Girard et al., 19911, or 
transfection of a dominant negative mutant of 
cdk2 [van den Heuvel and Harlow, 19931 pre- 
vents cells from entering S phase. Cdk2-cyclin A 
seems to affect DNA replication directly. Cdk2- 
cyclin A complexes are localized at foci of nuclear 
replication in terminally differentiated myo- 
tubes induced to re-enter S phase by transfec- 
tion with T antigen [Cardoso et al., 19931, and 
phosphorylation of the p34 subunit of RPA is 
required for initiation and maintenance of DNA 
replication [Fang and Newport, 1993; Waga and 
Stillman, 19941. Immunodepletion of cdk2 pre- 
vents DNA synthesis in a Xenopus cell free 
system [Fang and Newport, 19911 by preventing 
phosphorylation of the p34 subunit of RPA [Fang 
and Newport, 19931. Like cdc2, cdk2 is subject 
to inactivating phosphorylations at the active 
site [Gu et al., 1992; Sebastian et al., 19931. 
Cdk2 is dephosphorylated and activated by 
CDC25A: transcription of CDC25A begins in 
early G1 and peaks in late G1, and microinjec- 
tion of anti-CDC25A antibodies blocks entry 
into S phase [Jinno et al., 19941. 

Activation of cdk2-cyclin A appears to be the 
necessary, final step required for exit from G1 
and commencement of DNA replication. Cyclin 
A is unique among the cyclins, being required at 
two points in the cell cycle: both for mitosis and 
for DNA replication [Girard et al., 1991; Pagano 
et al., 1992; Zindy et al., 19921. In this light, it is 
interesting to  note that apoptosis seems to de- 
pend on cell cycle processes acting at  or about 
the time of the G1-S transition and comprises 
some of the same morphological changes found 
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in mitosis [Lazebnik et al., 1993; Rubin et al., 
1993; Sen and D’Incalci, 1992; Ucker, 19911, the 
most prominent being chromatin condensation. 
Could activation of cyclin A-dependent protein 
kinases be the molecular link between apopto- 
sis, the cell cycle, G1-S, and mitosis? Circumstan- 
tial evidence certainly seems to point in this direc- 
tion. Arrest in the cell cycle prior to the appearance 
of cyclin A tends to  protect cells from apoptosis 
[Belizario and Dinarello, 1991; Boehme and Le- 
nardo, 1993; Colotta et al., 1992; Howard et al., 
1993; Meikrantz et al., 1994; Nishioka and 
Welsh, 1994; Nufiez et al., 1990; Ryan et al., 
1993; Yonish-Rouach et al., 19931. This is not 
merely reflective of a requirement for p53 syn- 
thesis, since protection extends to p53-indepen- 
dent apoptosis-inducing agents as well (e.g., 
TNF-a, TCR ligation). Two oncogenes which 
induce apoptosis under restrictive growth condi- 
tions (i.e., in the absence of serum or without 
expression of a cooperating oncogene), c-myc 
and adenovirus ElA, are both transcriptional 
activators of the cyclin A gene [Buchou et al., 
1993; Jansen-Diirr et al., 1993; Shibuya et al., 
19921. In the rat prostrate, cyclin A follows 
c-myc as one of the proliferation-associated genes 
whose transcription is enhanced during castra- 
tion-induced apoptosis (R. Buttyan, personal 
communication). WEHI-231 cells accumulate in- 
creased levels of cyclin A protein following anti- 
IgM antibody treatment (Meikrantz, Boothby, 
and Schlegel, unpublished observations). Apop- 
tosis due to prolonged S phase arrest (22 h) of 
the early CD4’ T cell line AGF in high concentra- 
tions of thymidine is associated with transloca- 
tion of cyclin A and cdc2 to the nucleus [Gazitt 
and Erdos, 19941. Phosphorylation of the p34 
subunit of RPA, which depends on cdk2 [Fang 
and Newport, 19931, is stimulated by exposure 
of cells to ionizing radiation [Liu and Weaver, 
19931. This suggests that cdk2-cyclin A activity 
may actually be stimulated by apoptosis-induc- 
ing agents. Finally, staurosporine, a known acti- 
vator of CDKs, including cdk2-cyclin A [Mei- 
krantz et al., 1994; Tam and Schlegel, 19921, is 
an acute activator of apoptosis in human cells 
[Jacobson et al., 1993; Meikrantz et al., 19941. 

In S phase-arrested HeLa cells, apoptosis was 
induced by agents known to activate CDKs (caf- 
feine, 6-dimethylaminopurine, staurosporine, 
and okadaic acid), with activation of cyclin A- 
dependent kinases occurring within 2 h after 
exposure [Meikrantz et al., 19941. The extent of 
cyclin A-dependent kinase induction (two- to  
sevenfold) correlated well with the extent of 

apoptosis induction (1540% of cells with apop- 
totic nuclei at 8 h following treatment). Where 
examined, both cdc2-cyclin A and cdk2-cyclin A 
were activated. These results raised the follow- 
ing question: since CDK-activating agents in- 
duced apoptosis, would other apoptosis-induc- 
ing agents activate CDKs? This was found to be 
the case with TNF-a, which has previously been 
reported to act synergistically with chemical 
CDK activators such as caffeine [Belizario et al., 
19931 and staurosporine [Beyaert et al., 19931. 
HeLa cells are normally resistant to TNF-a, 
unless it is given simultaneously with cyclohexi- 
mide [Wallach, 19841 or to S phase-arrested cells 
[Meikrantz et al., 19941. In hydroxyurea-ar- 
rested cells, TNF-a stimulated CDK-cyclin A 
activity about threefold. Cotreatment with 
TNF-(Y and cycloheximide increased kinase activ- 
ity about sevenfold. Interestingly, cyclohexi- 
mide alone induced a fivefold increase in CDK- 
cyclin A activity, suggesting a mechanism for its 
potentiation of TNF-a killing. HeLa cells in this 
model system had to be arrested in S phase in 
order to undergo apoptosis: cells passing syn- 
chronously through S phase were not sensitized 
to killing. We suggest that this system is a 
“chemical” model for apoptosis: S phase arrest 
by hydroxyurea chemically imposes the cell cycle 
arrest component, while TNF-cr or chemical 
treatment provides the signal(s) for CDK activa- 
tion. 

Induced transcription of cyclin A followed by 
CDK-cyclin A activation also takes place in se- 
rum-starved Rat l a  fibroblasts during myc- 
induced apoptosis [Hoang et al., 19941. Two 
types of analysis were carried out to study cyclin 
expression in this system. First, cell lines were 
created in which myc was constitutively overex- 
pressed. In these cells, serum withdrawal led to 
extensive apoptosis, whereas serum withdrawal 
from cultures of parental cells had little effect. 
Analysis of cyclin transcription in the myc- 
overexpressing cells showed that cyclin A tran- 
scription was elevated compared with parental 
Rat l a  cells, while transcription of cyclin B, 
cyclin C, cyclin D1, and cyclin E were unaffected. 
A second group of cell lines was then created, 
expressing cyclin A under control of the Zn2+- 
inducible metallothionein promoter. Serum 
withdrawal plus exposure to 50 FM Zn2+ led to 
apoptosis. Not all of the cells expressed cyclin A 
to the same level following Zn2+ induction, and 
the extent of apoptosis observed in low serum 
plus Zn2+ conditions indicated a dose-dependent 
induction of apoptosis by cyclin A. Thus, in the 
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presence of growth arrest by serum starvation, 
expression of cyclin A alone was sufficient to 
induce apoptosis. 

Is CDK-cyclin A activation required for apop- 
tosis? The ability of a wide variety of apoptosis- 
inducing agents to induce CDK-cyclin A activity 
in S phase-arrested HeLa cells is suggestive of a 
common requirement for this enzyme, and the 
suficiency of cyclin A induction alone to pro- 
mote apoptosis in serum-starved fibroblasts is 
further evidence for such a mechanism. How- 
ever, the most direct evidence for a requirement 
for CDK activity in apoptosis comes from stud- 
ies of cytolysis induced by fragmentin-2/gran- 
zyme B, a protease component of the lytic gran- 
ules released by cytotoxic T cells or natural 
killer cells during destruction of their targets 
[reviewed in Greenberg and Litchfield, in press]. 
Fragmentin-2/granzyme B rapidly (within a few 
hours) induced apoptosis when added to deter- 
gent-permeabilized cells. Premature activation 
of cdc2 was found to be required for fragmentin- 
Blgranzyme B-induced apoptosis [Shi et al., 
19941. Cdc2 was rapidly activated at the initia- 
tion of apoptosis, and DNA fragmentation and 
nuclear condensation could be prevented by an 
excess of cdc2 peptide substrate. At least part of 
the induced kinase activity has subsequently 
been found to be associated with cyclin A (A. 
Greenberg, personal communication). Most im- 
portantly, fragmentin-2lgranzyme B-induced 
apoptosis was temperature dependent in FT2 10 
cells, which are homozygous for a temperature 
sensitive cdc2 allele [Th’ng et al., 19901. At the 
restrictive temperature, where mutant cdc2 is 
rapidly degraded, fragmentin-2lgranzyme B- 
induced apoptosis was inhibited by as much as 
50%. This strongly implicates CDK-cyclin A acti- 
vation as a necessary step in apoptosis induc- 
tion. Although the maximum inhibition seen 
was 50%, we note that FT210 cells contain a 
significant amount of cdk2-cyclin A that is unaf- 
fected by shift to the cdc2-restrictive tempera- 
ture [Hamaguchi et al., 19921. Since both cdc2- 
cyclin A and cdk2-cyclin A are activated in HeLa 
cells undergoing apoptosis, it is possible that 
elimination of all cyclin A-dependent kinase ac- 
tivity might inhibit apoptosis to an even greater 
degree. The relative predominance of cdc2- 
cyclin A complexes versus cdk2-cyclin A com- 
plexes early in the cell cycle seems to vary from 
cell type to cell type and as a function of growth 
conditions. For example, significant differences 
between monolayer and suspension HeLa cul- 
tures have been reported [Elledge et al., 19921. 

Recently, we have found that transient expres- 
sion of dominant negative mutants of cdc2 and 
cdk2 both suppress TNF-a-induced apoptosis in 
HeLa cells, although cdk2-cyclin A seems to be 
the crucial complex mediating apoptosis in these 
monolayer cells [Meikrantz and Schlegel, manu- 
script in preparation]. 

Much has been made in the literature of the 
morphological similarities between mitotic catas- 
trophe in yeast, premature mitosis in mamma- 
lian cells, and apoptosis. It has been suggested 
that apoptosis is a premature, abortive mitosis. 
At the beginning of this review, we presented 
the conceptual similarity between apoptosis and 
mitotic catastrophe in yeast, relating the two 
processes to checkpoint controls that impinge 
on CDKs. However, some clear biochemical dis- 
tinctions can be made between the two pro- 
cesses. First and most importantly, cdc2-cyclin 
B, whose activation is absolutely required for 
mitosis [Nurse, 19901 and premature mitosis 
[Steinmann et al., 19911 is not activated during 
apoptosis in HeLa cells [Meikrantz et al., 19941. 
Instead, activation of CDK-cyclin A complexes is 
observed. We note that cyclin A has no clear 
counterpart among the yeast cyclins. The chro- 
matin morphology induced by premature activa- 
tion of cdc2-cyclin B is different from that 
induced in apoptosis: chromosome spreads pre- 
pared from apoptotic cells stain homogeneously, 
typically containing one or more nonstaining 
“holes” [Arends et al., 1990; Meikrantz et al., 
19941, and do not present the characteristic 
“pulverized” appearance of premature chroma- 
tin condensation [Rao and Johnson, 19701. In a 
cell free system that mimicks many of the mor- 
phological characteristics of apoptosis [Lazeb- 
nik et al., 19931, depletion of cdc2-cyclin B did 
not suppress the response, mitosis-specific phos- 
phorylation of the MPM-2 proteins was not 
detected, and the nuclear lamins were not 
phosphorylated. In fact, the nuclear lamina dis- 
assembly that was seen seems to have been due 
to proteolysis rather than phosphorylation of 
the lamin proteins. 

Although we have suggested that apoptosis 
correspond may to the cyclin A-dependent half 
of mitosis [Meikrantz et al., 19941, it could 
equally be viewed as a premature and aberrant 
entry into S phase, resulting in condensation 
and cleavage of chromatin rather than DNA 
replication (see Fig. 2). Thus, while agents like 
staurosporine induce premature mitosis in G2- 
arrested cells, they induce apoptosis in G1 IS- 
arrested cells. In this sense, apoptosis resembles 
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Fig. 2. Relationship of CDK-cyclin A activation to DNA replication and apoptosis. 

mitotic catastrophe: both events are character- 
ized by improper timing of CDK activation and 
by uncoupling the normal interdependence of 
cell cycle events. 
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